|
| 1: |
|
primes |
→ sieve(from(s(s(0)))) |
| 2: |
|
from(X) |
→ cons(X,n__from(n__s(X))) |
| 3: |
|
head(cons(X,Y)) |
→ X |
| 4: |
|
tail(cons(X,Y)) |
→ activate(Y) |
| 5: |
|
if(true,X,Y) |
→ activate(X) |
| 6: |
|
if(false,X,Y) |
→ activate(Y) |
| 7: |
|
filter(s(s(X)),cons(Y,Z)) |
→ if(divides(s(s(X)),Y),n__filter(n__s(n__s(X)),activate(Z)),n__cons(Y,n__filter(X,n__sieve(Y)))) |
| 8: |
|
sieve(cons(X,Y)) |
→ cons(X,n__filter(X,n__sieve(activate(Y)))) |
| 9: |
|
from(X) |
→ n__from(X) |
| 10: |
|
s(X) |
→ n__s(X) |
| 11: |
|
filter(X1,X2) |
→ n__filter(X1,X2) |
| 12: |
|
cons(X1,X2) |
→ n__cons(X1,X2) |
| 13: |
|
sieve(X) |
→ n__sieve(X) |
| 14: |
|
activate(n__from(X)) |
→ from(activate(X)) |
| 15: |
|
activate(n__s(X)) |
→ s(activate(X)) |
| 16: |
|
activate(n__filter(X1,X2)) |
→ filter(activate(X1),activate(X2)) |
| 17: |
|
activate(n__cons(X1,X2)) |
→ cons(activate(X1),X2) |
| 18: |
|
activate(n__sieve(X)) |
→ sieve(activate(X)) |
| 19: |
|
activate(X) |
→ X |
|
There are 23 dependency pairs:
|
| 20: |
|
PRIMES |
→ SIEVE(from(s(s(0)))) |
| 21: |
|
PRIMES |
→ FROM(s(s(0))) |
| 22: |
|
PRIMES |
→ S(s(0)) |
| 23: |
|
PRIMES |
→ S(0) |
| 24: |
|
FROM(X) |
→ CONS(X,n__from(n__s(X))) |
| 25: |
|
TAIL(cons(X,Y)) |
→ ACTIVATE(Y) |
| 26: |
|
IF(true,X,Y) |
→ ACTIVATE(X) |
| 27: |
|
IF(false,X,Y) |
→ ACTIVATE(Y) |
| 28: |
|
FILTER(s(s(X)),cons(Y,Z)) |
→ IF(divides(s(s(X)),Y),n__filter(n__s(n__s(X)),activate(Z)),n__cons(Y,n__filter(X,n__sieve(Y)))) |
| 29: |
|
FILTER(s(s(X)),cons(Y,Z)) |
→ ACTIVATE(Z) |
| 30: |
|
SIEVE(cons(X,Y)) |
→ CONS(X,n__filter(X,n__sieve(activate(Y)))) |
| 31: |
|
SIEVE(cons(X,Y)) |
→ ACTIVATE(Y) |
| 32: |
|
ACTIVATE(n__from(X)) |
→ FROM(activate(X)) |
| 33: |
|
ACTIVATE(n__from(X)) |
→ ACTIVATE(X) |
| 34: |
|
ACTIVATE(n__s(X)) |
→ S(activate(X)) |
| 35: |
|
ACTIVATE(n__s(X)) |
→ ACTIVATE(X) |
| 36: |
|
ACTIVATE(n__filter(X1,X2)) |
→ FILTER(activate(X1),activate(X2)) |
| 37: |
|
ACTIVATE(n__filter(X1,X2)) |
→ ACTIVATE(X1) |
| 38: |
|
ACTIVATE(n__filter(X1,X2)) |
→ ACTIVATE(X2) |
| 39: |
|
ACTIVATE(n__cons(X1,X2)) |
→ CONS(activate(X1),X2) |
| 40: |
|
ACTIVATE(n__cons(X1,X2)) |
→ ACTIVATE(X1) |
| 41: |
|
ACTIVATE(n__sieve(X)) |
→ SIEVE(activate(X)) |
| 42: |
|
ACTIVATE(n__sieve(X)) |
→ ACTIVATE(X) |
|
The approximated dependency graph contains one SCC:
{29,31,33,35-38,40-42}.